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1. INTRODUCTION

It is customary to use the parallel-flow approximation to describe the linear instability of

boundary-layer flows to small amplitude disturbances. In spite of the qualitative success of this

assumption, the parallel stability theory does not explain some important phenomena, and the

experiments [1-3] have shown systematic differences with the theory.

Apart from predicting a minimum critical Reynolds number that is lower than that given

by the parallel stability theory, evidence from experiments shows that the growth rate of the

disturbance is not only a function of the coordinate normal to the wall, but also is different for

different flow quantities. These phenomena occur due to the increase in the boundary-layer

thickness. In cases where the mean boundary-layer flow changes rapidly due to localized

adjustments, the parallel flow assumption is expected to fail, and the stability characteristics

may not be accurately predicted. Also at the early stages of the nonlinear interactions, E1-

Hady [4] has shown that nonparallel flow effects may control the initial development of the

triad components in a triad resonant interaction model.

The comparison of the minimum critical Reynolds number between theory and experiment

is always poor (this comparison exists only for incompressible flows). The large discrepancy

occurs for high-frequency disturbances that exhibit weak amplification, and has often been

attributed to nonparallel effects of the mean flow. Thorough analytical and Navier-Stokes

investigations for incompressible flows [5] have confirmed that the nonparallel mean-flow
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effects, if accurately calculated, are weak for two-dimensional (2D) disturbances and conse-

quently do not explain the discrepancy between the theory and the experiment at incompressi-

ble speeds. Some plausible reasons due to difficulties encountered in low speed experiments

are discussed by Saric [6], which may have large effects on the experimental measurements

specially for high frequency disturbances. Bertolotti [5] has conducted a sensitivity study on

the neutral curves of 2D disturbances in incompressible flows. He investigated the effect of the

distance from the wall at which the measurements are made, the effect of the presence of a

slight adverse pressure gradient, the effect of the extent of transient response ( from a vibrating

ribbon) following altered initial conditions, and the effect of nonlinear disturbance-amplitude

levels used in the experiments. He found that all factors may contribute to the well known

theoretical-experimental discrepancy at incompressible speeds.

The effect of the mean-flow nonparallelism on the stability and transition prediction of

boundary layers is better illustrated by investigating the behavior of the growth rates of given

disturbance frequency rather than by investigating its effect on the critical Reynolds number.

For the fiat plate compressible boundary layer, the boundary-layer thickness _i grows propor-

tional to M 2 , where M_ is the free stream Mach number. Clearly, as the Mach number

increases, the boundary layer becomes thicker and therefore the effect of the flow nonparallel-

ism on the stability characteristics could be more pronounced for supersonic and hypersonic

flows. For these speed ranges, accurate prediction of transition and transition control may be

extremely beneficial, since skin friction and subsequent aerodynamic heating are considerably

higher for turbulent flows at high speeds.

High speed stability experiments have been carried out on flat plates [7-9], and cones

[10-12]. Each experimental facility has its own problems, some of which are due to sound

radiation from the tunnel-wall boundary layer which affects the disturbance growth and dom-

inates the transition process. Consequently, one expects to find difficulties and discrepances

when comparing theoretical and experimental results for high-speed boundary layers; see Bush-

nell [13] for a description of the possible difficulties as well as suggested remedies. Almost all
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experimentalmeasurementsreportedon the stability of boundarylayers were madeby means

of hot-wire anemometers.Any suchmeasurementsencountertwo basicdifficulties that come

from the responseand the sensitivityof the hot wire. The hot-wireresponseis a combination

of mass-flowand stagnationtemperaturefluctuations. When the hot wire is operatedat high

constantoverheat,its responseis proportionalto the meansquareof the mass-flowfluctuations.

Also the sensitivityof thehot wire changeswhenit movesacrossthe boundarylayer, or when-

ever the meanflow is changed. Disturbancesthat developin a growing boundarylayer have

eigenfunctionsof nonsimilar nature,thus making it difficult to separatethe actual growth of

the disturbancefrom the change in the amplitude distribution across the boundary layer.

Hence,eachmeasurementtechniquewill necessarilyinclude thecontributionof the streamwise

distortionof theeigenfunctionin the measurementof the growthrateof thedisturbance.

Nonparallel stability theoriesfor a compressibleboundarylayer were developedby EI-

Hady and Nayfeh [14], E1-Hady[15], andGaponov[16]. The nonparalleltheoryaccountsfor

the weak dependenceof the flow parameterson the streamwisecoordinate,aswell asthe velo-

city normal to the wall. This theory gives a more accuratemathematicalmodel for the

developmentof the disturbance. The calculation of the neutral stability in the nonparallel

theory encountersthe difficulty of being dependentupon the disturbanceflow quantity e.g.

streamwisevelocity, massflow, total temperature,kinetic energy,andalsouponthe coordinate

normal to the wall. Someof thesequantitiescaneasily be measuredin an experiment,while

somearedifficult to measure.For meaningfulcomparisonwith the experiment,the samedis-

turbancequantity usedin themeasurementsmust beusedin the stability calculations.

The purposeof this paperis to revisit the nonparallelstability theoryand clarify a rather

confusednumericalsituation.This situationarisesdueto totally neglectingthe distortion of the

eigenfunctionof the disturbancewhencomparingwith low speedexperiments[17,18], or due

to insufficient grid resolution in calculatingthe distortion of the disturbanceeigensolutionas

Mach numberincreases[14], which wascorrectedby E1-Hady[15] for Mach number4.5. The

effect of the growth of the boundarylayer on the amplificationratesof the disturbances,and
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on the maximum amplifiedfrequenciesis assessedfor a largerangeof Machnumbersinclud-

ing first- and second-modedisturbances.Disturbancegrowth rates are calculatedbasedon

three different methods,namely,following the maximum of the mass-flowdisturbance,using

the integral of the disturbancekinetic energy,andusingthe integralof the squareof the ampli-

tude of the mass-flowdisturbance. In Section2, the multiple scalinganalysisof the stability

problem is developed. Section3 discussesdifferentdefinitionsof the disturbancegrowth rate.

Resultsof subsonicandsupersonicstability arediscussedin Section4.1. Resultsof hypersonic

stability arediscussedin section4.2. Section4.3 givesa comparisonbetweennonparallelsta-

bility resultsand experiments.We end with concludingremarks.

2. ANALYSIS

In this study we are concernedwith the so-calledfirst-modeand second-modeinstability

of the supersonicand hypersonicflat plate boundary layers. The most amplified wave is

three-dimensional(3D) for supersonicboundarylayers,and two-dimensional(2D) for hyper-

sonicboundarylayers.

The flow field is governedby the laminar, compressible,3D Navier-Stokesand energy

equations. Lengths, velocities, and time are made dimensionlessusing a reference length

L ° = (v_,x'luo,) 1'2, the local free stream velocity u_,, and L'lu*o, respectively, so that the Rey-

nolds number is given by R = u_,L'/v_, = _/__. Here x ° is the streamwise distance from the

leading edge, vj, is the kinematic viscosity coefficient calculated at the local free stream condi-

tions, and the asterisk indicates a dimensional quantity. The pressure is made dimensionless

* *2using p0,u0,. The temperature, density, specific heats, viscosity, and thermal conductivity of air

(treated as perfect gas) are made dimensionless using their corresponding local free stream

values.

We consider the 2D compressible mean flow to be slightly nonparallel; that is, the normal

velocity component v0 is small compared with the streamwise component u0, the mean-flow

quantities are weakly varying functions of the streamwise coordinate x. The parameter
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characterizesthis weakvariationand is identifiedwith I/R. Themethodof multiple scales[19]

is usedto introducethe slow scalesxl = ex and zl = ez in the streamwise and spanwise direc-

tions, respectively. These scales govern the growth of the boundary layer, the modulation of

the disturbance amplitude, and the change in the eigenfunction, while the phase of the distur-

bance changes over the spatial scales x, z, and the temporal scale t. The mean-flow velocity

and pressure fields are then given by

Uo = Uo (xl,y), Vo = eVo (xl,y), Po = po(XL)

and the mean-flow temperature, viscosity, and density are given by

T O = T O(xl,y), I.to = I.t0 (xl,y), 130= Po (xl,y)

The boundary-layer temperature and density profiles are related by poTo = 1, and the viscosity

is a function of the temperature only, through Sutherland's law.

To study the stability of the compressible nonparallel mean flow, we assume that the flow

quantities possess a uniformly valid expansions of the form

2

0 = qo(xl,Y) + _ E'q,,,(x,xl,y,z,za,t,tl) + O(_ 3) (1)
m=l

where qo stands for the steady mean-flow quantities uo, Vo, w0, po, To, tlo, and Po ( w0 = 0 for 2D

mean flows), ql and q2 stand for the corresponding unsteady small disturbance quantities and

t_ = e t is a slow time scale.

Substituting Eq.(1) into the governing Navier-Stokes equations, transforming the space

and time derivatives to xl, z_, and ta, subtracting the mean-flow terms, linearizing the equations,

and equating the coefficients of like powers of E, we obtain the following first- and second-

order disturbance equations:

Order e :

391 891 _P0 .3ul 3vl bw l .

= +uO- x + +P°t-fix + -Yfy+ >--o (2)
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3 _uo . 3 _v, 3w1.1+ -b3-y_--ffy_,_+ (m+,)_o_c-ffy+ -bT) --o
(3)

_V 1 OVI ._ +

Ls(ux,vl,wt,pl,T1) = Po(--_- + uo _----_-: _P 1 1 I 01.to[m 3u 1 3v 1 igw i •_y R lt°V2vl + _ -_x + (m+2)---_-y + m---_--z |

3 . bu 1 3w i. 3u o 3t.h

+ o,,+,)_--_-;+--_V_+ _--F_---;-
=0 (4)

L4(ul,vl,wl,PO = Po(--g- + Uo--_-;-x ) +
3pl 1 [ 3_ Owl Ova._, R _°v_'_'+--_-y_--_--y+--g-'_

+ (m+l)_tO-gz(--_-x + 3y J

(5)

(6)

L6(pl,T_,P_) = _/M._,p_ - poT1 - Topt = 0
(7)

Order £_ •

L _(uz,vz,w2,Tz) =

3w_. 3p_ .3uo 3vo,_ ap_ _9o

3P_ P°(3U_3x_+ 3zt'---) - U°_xt -('w--ox_ + --_Y)P_ - v° 3y 3xl ut

(8)
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aZu l hew1 aZw l aZwl azw l 3Zv l 8_ by1

+ aWT;_az+m(a-77;laZ+ a-TgTz__+ _S-gTx_+ aTax+(m+_aSTaT_ay]+ 8y 8x l

a_ .... aul 3vl 3wl 3Uo 3Vo , 311_]

+ _xtRm+z)-_-x + m--_-y + m--if-z-z ] + [(m+2) _-;7 + m-_y J-_-x J

3Uo bUo 3Uo Oul

- (uo_-_T+vo-F-y_p_-_,o(_-L?u_+,,o--fir_ (9)

. bv I Ov I 1 [ 32v 1 _2v L 32v I O2v1 . alto, Ou a

,_(u_,v_,w_,p_,r,_=-_,ota-a7+ uo-aT_+_-[_o(a--;agx_+asTg_ax+ a-zgT_+ asT_az) +m-aT_a-7

+ (m + 1)l.to-a-Ty( a-_7-x

+ [(m+l) _-_-_(+ (m+2)_-_-]_q -
(10)

,aWl awl _Pl 1 f a2W1 a2Wl 02W1 a2W1 .

L4(U2,V2,W2,P2,T2) = --PO¢t.-_l + UO _'_1 )- _ + _-[_l'O[ _"_Xl + _ + (m+2)(_-_Tzx + 8-_1_z )

+ m<_-V_x+ gi-_
a2U 1 £J2U 1 . _2V 1

+ a-77_az+ axa_--7+tm+l>aT--_

"1- ----

3_ 3v

igy 3z 1

alto 3w_ 3u_. aUo 3Vo. 31a_] 3w_

+ __l ['--_-x + --_-z ) + m(_-_l + -'-_-y)-_'z J - poVo Or
(11)

_T 1 _T1 _To _yl OT0 _ToLs(uz,v>p2,T2) = -po(-_-t_ + Uo _-_-7) - Po(_--_-Tu_ + Vo ) + (Uo_-_-7 + Vo--_y )p,

[3pi 8px _Po _Pt . 1 _Uo _vi _Uo _ui _Vo _Vx+ (T-1)M 2 _ + Uo_--_[ + 3-_1 ul + Vo---_-y + zBo_'-t-_y _x i + (m+2)( Oxl 3x + 3y _y

(12)
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where r is Prandtl numberthat is a function of the mean-flow temperature, M. is the frees-

tream Mach number, and rn = 2(e-1)/3 is the ratio of the second to the first viscosity

coefficients, e = 0 corresponds to the Stokes hypothesis; it is taken to be 0.8 in this analysis.

Moreover,

b2 _ b2V 2 = (m+2)_--_x z + (m +2) b + (m+2)c 3-_-T

The exponents a, b, and c take the values 1,0,0 for Eq (3), 0,1,0 for Eq (4), 0,0,1 for Eq (5),

and 0,0,0 for Eq (6). The leading-order equations are homogeneous and govern the disturbance

motion in a parallel flow, while the higher-order equations include the nonparallel effects as

inhomogeneous terms.

A. First-order equations

We express the solution of the homogeneous equations as

ql, = a(xl,zl,tl) _(xl,y,zl) e i_ +cc. n=l,..,8 (13)

where a(xl,Zl,tl) is an amplitude modulation function that is determined by the solvability con-

dition of the higher-order inhomogeneous equations, _(xly,z_) are eigenfunctions, qt, are the

physical wave amplitudes, and "cc" stands for complex conjugate. Note that the quantity

a (xlz 1:1) _,(xty,z 1) is unique and is independent of the eigenfunction normalization, and can be

directly compared with the experiment. In Eq (13), ql,, n = 1.....8 stands for ul, but�by, vl, pl,

TI, bTJby, wz, and bwa/by, respectively, and

= a(x:O,
bz o_
-_z = fb(xl,zO, b--t-= -co (14)

The phase function x is assumed to be continuously differentiable; that is, 3Wbz_ = bf_/_x_, a

and 13 are the complex wavenumbers in the x and z directions given by a = ar + i eti and

1_= {_r + i[_, and co is the complex frequency given by co = cot + icon. The density disturbance is

related to the pressure and temperature disturbances through the state equation (7), while the

viscosity disturbance is related to the temperature disturbance by _1 = (dlao/dTo)T1.
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Substituting (13) and (14) into the first-order equations, and writing the result as a system

of eight first-order ordinary differential equations, we obtain

8

D;. - Z b.j;j = 0. ,,=1.....8 (15)
)=1

subject to the boundary conditions

;1 = ;3 = _6 = ;7 = O, at y = 0 (16)

_l, ;3, ;5, ;v_ O, as y--) oo, (17)

where D = d/dy and the nonzero elements of b.j are given in Appendix A.

B. Second-order Equations

In order to determine the amplitude A

second-order equations in the form

q2n = gtn(y;xt,zx,tl) ei_r + cc. n=1,..,8 (18)

where q2. stands for u2, Ouz/Oy, v2, p2, T2, OTz/Oy, w2, and Ow2/by, respectively. By using Eqs

(13), (14) and (18), we can write the second-order problem as eight first-order equations in the

form

8

Dvn - _ b,jgt) = In, n=l ..... 8, (19)
j=l

subject to the boundary conditions

_1 = gt3 = _5 = _7 =0, at y =0, (20)

_1, V3, _5, V7 _ O, as y _ oo (21)

The coefficients b.j are the same as in Eq.(15), while the inhomogeneous terms In are functions

of the first-order eigensolution ;. of Eq.(4), a, 13, co, and the mean-flow quantities. The terms

I. include all leading-order nonparallel flow effects.

in (13), we seek a particular solution for the
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The necessaryand sufficient condition for solving the inhomogeneousset of Eqs.(19) is

that 1, must be orthogonal to the solution of the adjoint problem. This can be expressed as

8

! .=1El" _' dy = 0, (22)

where _,_ are eigensolutions of the equation adjoint to (19). Thus _,_ satisfy

$

D_,_ - ]_ b'.j _" = 0, n=l ..... 8, (23)
)=1

_z = _ = _6 = _ = 0, at y =0, (24)

;j, rg, ;g, ;j --, 0, as y --, = (25)

The solvability condition (22) gives the following differential equation for theand F_ =-bj..

evolution of the amplitude A in time and space:

OA OA _A

bt---_+ hl-b-_x_ + h2-_z_ + h3A =0 (26)

Here, h_ and hz are the components of the disturbance group velocity in the x and z directions,

respectively, while h3 reflects the effect of the nonparallelism of the mean flow. In Eq (26), h3

contains the x, and z, derivatives of the steady mean-flow quantities, the derivatives of the

wavenumbers a and [3, and the derivatives of the eigenfunctions _,,n = 1,..,8 of the leading-order

problem. The expressions for hl and h3 are given in Appendix B.

For the purpose of our investigation, and to be closer in representing the experiment, we

consider the spatial modulation of a single frequency disturbance (i.e. OA/bt, = 0) which has a

uniform amplitude in the spanwise coordinate (i.e. _A/_zl = 0) . Note that the phase of the dis-

turbance varies with the streamwise and the spanwise directions but the slow modulation of the

disturbance occurs only in the streamwise direction. Equation (26) simplifies to

dA i_x A, _t i h3 (27)
dXl ha

and therefore,
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A = A0 exp [i_ _ _z dx ] (28)
x 0

where A 0 is the initial amplitude at x = x0. In order to calculate ec, it is necessary to evaluate

the nonparallel terms a_./axl and doUdxl in h 3.

with respect to x: and obtain

a_j[3_.]- Y', b.j
DL_-_-lJ j=, ax_

a_: a_3 a_s

ax: ax: axl

a_1 a_3 a_5 a_7

We differentiate the first-order equations (15)

__ = _ ab.j
i=1 _ _J' n=l,..,8 (29)

a_7
- - O, at y = 0, (30)

3x:

--->0, as y -* oo (31)
Ox:' Oxl' ax:' Oxl

The homogeneous part of Eq.(29) has a nontrivial solution; its eigenvalues and adjoint is the

same as that for the first-order equations (15). Again, by applying the solvability condition, we

can evaluate dcUdx_, and then integrate Eqs (29)-(31) to determine a_./3xa, using the same pro-

cedure as for the first-order equations, but for a nonhomogeneous set of equations.

Therefore, to the leading-order approximation Eqs (13), (14), and (28) give the distur-

bance as

q,, =Ao _.(xx,y) exp i[ S(ot + £ _) dx + l]z - o)t ] + O(E2), n=l .....8 (32)

Where both 13and co in Eq (32) are real constants.

The spatial growth rate of the disturbance can be given as:

1 a_.]
_.=-a,-_a,+_ _. a-_lJ,' n=l ..... 8 (33)

The first term is the spatial growth rate in a parallel flow, while the second and third terms are

the nonparallel correction. A correction to the disturbance wavenumber due to mean-flow non-

parallelism can also be calculated by the theory. The wavenumber of the disturbance is given

by :
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k =_r+e&r+_/lr a;n] , n=l .....8 (34)

where the subscripts r and i in Eqs (32) and (33) stand for the real and imaginary parts of the

quantity.

3. DEFINITION OF THE GROWTH RATE

Equation (13) gives the physical disturbance amplitude as A (xl);(xj,y), where A(xl) is the

amplitude modulation function, and ;(xl,y) is an eigenfunction. Because part of ; can be

absorbed in A, and hence in e in Eq (27), then _ is dependent on the normalization of the

eigenfunction ;. On the other hand, the physical disturbance amplitude A(xl)_(xL,y) is unique

and is independent of the eigenfunction normalization. The spatial growth rate of the distur-

bance then can be evaluated by using Eq (33) which consists of three terms. The first term is

the parallel growth rate, while the second and the third terms together give the nonparallel

correction to the parallel growth rate. The second term is independent of y, while the third

term, which arises due to the distortion of the eigenfunction, is not only x and y dependent, but

also is a function of the physical-flow quantity. Because of this behavior, the neutral stability

curve as well as the growth rate of the disturbance in the nonparallel stability theory becomes a

function of (x,y) as well as the flow quantity used in the calculations. This complicated char-

acter of the growth rate and of the stability definition , although undesirable, is shared by the

experiments.

All growth rate calculations reported in this paper use the definition given by Eq (33),

which is based on relevant physical quantities. The mass-flow disturbance is chosen for this

purpose as a physical quantity that can be measured experimentally in compressible boundary

layers. The mass-flow disturbance ;9(xl,y) is derived by subtracting the mean mass flow from

the total mass flow and linearizing to arrive at

U0 _5

;9(xbY)=-_o ['yM2_- To ]

1

+ -- (35)
T0
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where _t, _ and _5 are u_ , Pl, and T 1 respectively. We normalize the eigensolutions such that

the maximum of 1_91 over the normal coordinate is equal to one.

At Mach numbers 1.6 and 3.0, and different streamwise locations, Figs (1) and (2) show

the variation with the normal coordinate of the mass-flow disturbance amplitude across the

boundary layer, the variation of the mass-flow eigenfunction distortion (the third term in Eq

(33)) and the variation of the total nonparallel growth rate given by Eq (33). These figures

show that the distortion of the mass-flow eigenfunction can have an apparent stabilizing or des-

tabilizing influence depending on the y-location where the growth rate is calculated. The value

of the distortion is relatively small at the y-location where l_9t is maximum.

The rapid change of the distortion term that is observed in Figs (1) and (2) around the

peak of the eigenfunction makes the theoretical calculations of nonparallel growth rates highly

sensitive to both the grid resolution in the normal coordinate, as well as the procedure used to

search for the peak value. This sensitivity increases as Mach number increases. The nonparal-

lel results of E1-Hady and Nayfeh [14] suffer from this sensitivity due to the use of low grid

resolution in the normal direction. Note that the eigenvalue of the first-order problem (15) is

not sensitive to the grid resolution. These results were corrected by E1-Hady [15] for Mach

number 4.5. The rapid change in the distortion term may easily create a source of discrepancy

between nonparallel-theory calculations and experiments that claim to follow a certain y-

location (within the experimental error). This point will be discussed in more details in Sec-

tion 4.3 when comparing the theoretical and the experimental results. To decrease the effect of

this sensitivity in calculating the nonparallel growth rate, a value of the distortion effect may

be chosen near the outer edge of the boundary layer, where it is apparently constant as shown

in Figs (1) and (2). However, it might be difficult in the experiment to measure with reason-

able accuracy the amplitude of the disturbance at these y-locations.

Previous nonparallel stability investigations using the same analysis approach dropped the

third term in Eq (33) when calculating the nonparallel growth rate [14,17,18]. This was

justified in [17] by claiming that the contribution of the distortion of the eigenfunction to the
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growth rate canbeneglectedwhenthe growthrate is calculatedat I _lm,x. It wasalso claimed

in [17,18] that, by dropping the third term in Eq (33), the agreementbetweenthe theoretical

and the experimentalgrowth ratesbecomesbetter for the experimentaldata that aremeasured

at or near [_llma x. Both justifications are in error. With respect to the first claim, it is true that

the distortion of the eigenfunction is near minimum when it is calculated at IQxlm,_( or I Qglm,x

for compressible flows) but its value cannot be neglected compared to other terms in Eq (33).

To show this fact, Table 1 lists calculated values of different terms in Eq (33) for the most

amplified nonparallel frequency at R = 1000. At M. = 0, Van Stijn and Van de Vooren [20]

corrected the error in the growth rate calculations by adding the third term in Eq (33). With

respect to the experiments and the comparison with the theory, difficulties encountered at low

speeds and discussed by Saric [6] may have large effects on the experimental measurements.

Consequently, these experimental data, especially for high frequency disturbances, should be

treated cautiously. Sensitivity studies performed by Bertolotti [5] indicated that many factors

may contribute to large deviation in the measurements and to the discrepancy between theoret-

ical and experimental results.

The variation of the disturbance growth rate with the normal coordinate as defined by (33)

suggests the use of a quantity that is integrated across the boundary layer. The square of the

mass-flow amplitude, or the total energy of the disturbance may be suitable physical quantities

that can be used for that purpose. While the first is measurable, the second is difficult to

measure due to lack of adequate means for measuring the disturbance normal velocity com-

ponent [6]. In this paper, we also present results of the disturbance growth rates using the

integral of these physical quantities in Eq (33) to calculate the nonparallel growth rates. The

integral of the square of the mass-flow disturbance is given by,

/_(X) : J" [ ;9_9 l dy (36)
0

and the integral of the disturbance kinetic energy is defined as,

i u0 452u0 1_.1_(_1_1 + _3_3 + _7_7 ) + To ( TM_ - To ) l dy (37)E(x) : I ;1 + r0
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4.1. Subsonic and supersonic stability

The effect of mean-flow nonparallelism on the boundary- layer stability is demonstrated in

this section by presenting results for the disturbance growth rates at two streamwise locations,

namely, R = 500, and R = 1000. Results are presented in Figs. (3a) and (3b) for Mach numbers

0.0 and 0.8 where a 2D Tollmien Schlishting (TS) mode is dominant, and in Figs (4a)-(4c) for

Mach numbers 1.6, 2.2, and 3.0, where an oblique first mode is dominant at an angle 0

between 50- 65 degrees. Each figure shows three different curves for the growth rate. Curve

(a) is the parallel spatial growth rate ( first term in Eq 33), curve (b) is the nonparallel spatial

growth rate without the distortion effect of the eigenfunction (first two terms in Eq (33)), and

curve (c) is the total nonparallel spatial growth rate including the contribution of the distortion

of the eigenfunction. The growth rates (a) and (b) are independent of the normal coordinate y,

as well as the disturbance-flow quantity, but the growth rate (c) is a function of both. In Figs

(3) and (4), we choose to calculate the growth rate (c) at the y- location where the mass-flow

disturbance amplitude peaks. This choice is made in order to simulate the experimental meas-

urements at high speed boundary layers which use a hot wire operated at constant overheat to

follow the peak of the mass-flow disturbance.

At subsonic Mach numbers, Fig (3), curve (b) overestimates the nonparallel effects;

however, curve (c) shows that if one follows I_l ma_(in the incompressible limit the mass-flow

and the streamwise-velocity disturbances have identical y-distribution), one observes a slight

shift of the unstable frequency band to higher values, but only a small effect on the growth

rates when compared with the parallel curve (a).

As Mach number increases to the supersonic range, Fig (4) indicates that curve (b) still

overestimates the nonparallel effects. Curve (c) that follows 1_91 max shows large effects on the

growth rates accompanied by a one-side shift of the unstable frequency band to higher frequen-

cies when compared with the parallel curve (a). At Mach numbers 1.6, 2.2, and 3.0, oblique
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disturbancesareusedin the calculationsbecausethey aremost unstable. The contributionof

the flow nonparaUelism at supersonic Mach numbers to the disturbance growth rates, unstable

frequency band, and the shift of the most unstable frequency, seems different from that at sub-

sonic Mach numbers. However, by comparing Fig (4a) for an oblique wave at m_ = 1.6 with

Fig (5) for a 2D wave at the same Mach number, we conclude that this difference is due to the

obliqueness of the disturbance rather than the increase in Mach number.

Previous figures show the local (at fixed R ) behavior of the total nonparallel growth rate,

curve (c), with respect to the parallel one, curve (a). The same behavior is also observed when

a disturbance with a fixed frequency propagates downstream. For 2D and oblique disturbances

at M. = 1.6, Figs (6a) and (6b) show respectively the variation of growth rate curves (a) and

curve (c) with Reynolds number for a nondimensional frequency F = 6o/R =40x10 "6. The

growth rates of the 3D disturbances in Fig (6b) are calculated with constant spanwise

wavenumber parameter B = 103_/R = 0.1 in the streamwise direction corresponding to a wave

angle of 50 degrees at branch I. The wave angle slightly increases as the disturbance pro-

pagates downstream. The solid dots in Fig (6) are the results by Bertolotti (unpublished data

provided in a private communication) using the parabolic stability equations approach (PSE).

They are in full agreement with our results at M_ = 1.6. The PSE approach [5,21] uses the fact

that the second-order derivatives of the disturbances growth rate, wavelength, and velocity in

the streamwise direction are negligible, resulting in an initial value problem which is solved by

a marching procedure.

Figure (7) shows the effect of the wave obliqueness on the maximum nonparallel growth

rate (curve c) at M_ = 1.6 and R = 500. The maximum parallel growth rate (curve a) is included

for comparison. Here the maximum growth rate is calculated with respect to the frequency.

Nonparallel effects are almost negligible for 2D and slightly oblique waves and increase as the

wave angle increases.

Figure (8) gives the variation of the maximum spatial growth rates with respect to fre-

quency of an oblique disturbance at 55 degrees with streamwise position. The same variation
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is shownfor a 2D disturbancefor comparison. Considerablenonparalleleffect is indicated by

curve (c) for the oblique wave (about 20 % increasein the maximum spatial growth rate at

R = 1000), while it is negligible for 2D disturbances.

Results concerning the integral definition of the growth rates are presented in Figs (9a)

and (9b) for a 2D TS mode at Mach numbers 0 and 0.8, respectively, and in Figs (10a)-(10c)

for an oblique mode at Mach numbers 1.6, 2.2, and 3.0, respectively. Each figure shows three

different curves for the disturbance growth rates. Curve (a) is the parallel spatial growth rate,

curve (d) is the nonparallel spatial growth rate using the integral of the square of the mass-flow

disturbance, and curve (e) is the nonparallel spatial growth rate using the integral of the distur-

bance kinetic energy. All of these growth rates are independent of the normal coordinate.

These figures show that the integral of energy criterion always overestimates the nonparallel

effect compared to other criteria. As Mach number increases, Fig (10) shows little difference

between curves (d) and (e).

4.2. Hypersonic stability

As Mach number increases, multiple eigenvalues of amplified and damped disturbance

modes result as solutions to the compressible stability equations [22]. The leading unstable

mode (called second mode) and higher ones are most unstable as 2D waves.

In this section, we present disturbance growth rate results at Mach numbers 4.5, 5.8, 7.0,

and 10, concentrating on the 2D second mode at R = 1000. A comparison between growth rate

curves (a) parallel, (b) nonparallel without the distortion of the eigenfunction, and (c) nonparal-

lel with the distortion of the eigenfunction, are shown in Figs (lla)-(llc) for Mach numbers

4.5, 5.8, and 7.0, respectively. Again, in these figures, the growth rate curve (c) is calculated

at the y-location where the mass-flow disturbance is maximum. Figures (lla)-(1 lc) show that

curve (b) overestimates the nonparallel effect, while curve (c) indicates a shift of the unstable

frequency band to higher values. Although the most amplified frequency is higher due to non-

parallel flow effect, the maximum growth rate is almost the same as the parallel calculations.
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Resultsof the integral definitionof thegrowth rate for the secondmodearegiven in Figs

(12a)-(12c)for Mach numbers4.5, 5.8, and 7.0, respectively.Curve (e), which representthe

integralof the disturbancekinetic energy,predictsalmostthe samenonparallelgrowth ascurve

(c) in Fig (11). Also, curve (d) of the integral of the squareof the mass-flowdisturbanceis

underestimatingthegrowth ratescomparedto curve (c) of Fig (11).

A summaryof nonparallelflow effects is given in Figs (13a) and (13b) for a range of

Mach numbersfrom 0 - 10 at R = 1000. The maximum mass-flow amplitude criterion is used

to calculate the nonparallel growth rates. The maximum spatial growth rate (Fig 13a) calculated

using the nonparallel theory is higher by approximately 20% in the supersonic range (for an

oblique first mode), and by about 8% - 22% in the hypersonic range (for a 2D second mode)

as compared to the parallel one. Another noticeable nonparallel effect is shown in Fig (13b).

Nonparallel calculations indicate a shift of the most unstable frequency to a higher value by

about 6% - 12% in the supersonic range, and by about 6% - 12% in the hypersonic range com-

pared to the parallel one.

4.3. Comparison with experiments

The number of experiments that measure the flat plate linear stability characteristics of

supersonic or hypersonic boundary layer is limited. Serious difficulties are usually present in

such experiments due to sound radiation from the turbulent wall boundary layer [7,9,10] that

ultimately affect the disturbance growth rate measurements (noisy wind tunnels). Another limi-

tation of the experiments is that they study the propagation of disturbances that arise naturally

in the boundary layer [7,9,10]. These disturbances are comprised of a frequency spectrum with

unclear impact of the different components on the signal of the hot-wire anemometer. Stability

theory usually studies the development of individual components of the disturbance spectrum

corresponding not only to a certain frequency but also propagating at a certain angle.

With these difficulties, stability experiments were undertaken mainly to qualitatively prove

the findings of the stability theory concerning the first- and second-mode characteristics in
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supersonic and hypersonic speeds. Data from supersonic experiments using naturally-

developing disturbancesare usually comparedwith calculations for the most theoretically

amplified disturbanceswhich areoblique. The comparisonperformedby EI-Hadyand Nayfeh

[14] with theseexperimentscannot be regardedas correct, and the uncertaintyof the wave

angle in theseexperimentsmake them unsuitablefor comparisonwith theoretical nonparallel

results.

The detailedexperimentof Kendall [8] at M. = 4.5 is superior to others [7,9,10] for the

following reasons. The tunnel wall boundary layers were laminar, and difficulties caused by

turbulence-induced sound waves were avoided. Artificial disturbances of known frequencies

and wave obliqueness angles 0 = 0°, and 0 = 550 were introduced into the flat p/ate boundary

layer. This was achieved by glow discharge formed using electrode pairs positioned at these

angles. The glow discharge locally heats the flow producing a pressure disturbance with too

small dissipating power to affect the mean flow. A hot-wire anemometer that operates at high

constant overheat was used for wave measurements, thus minimizing its sensitivity to total

temperature disturbances. The distribution of the measured disturbance amplitude across the

boundary layer in Kendall's experiment was almost similar at different streamwise locations.

Because of this, the maximum amplitude points followed in the experiment had a contour of

almost constant y-location; hence the sensitivity of the hot wire to changes in the mean flow

conditions was minimum. Then, energy fluctuations measured by the hot wire have been inter-

preted as being nearly proportional to the mass-flow disturbance amplitude.

In Kendall's experiment, the disturbance growth rates were measured in the streamwise

direction following the maximum amplitude location. The disturbances introduced at 0 = 550

were found to grow nearly equal at various spanwise locations. One minor difficulty remaining

unresolved in Kendall's experiment is that the thickness of the boundary layer exceeded the

theoretically predicted value by about 10 %, although the experimental velocity profiles were

similar to the calculated ones. For comparison purposes, the calculations are made at a value

of Reynolds number based on the experimental displacement thickness.
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Figure (14a) showsa comparisonof the growth ratesof a first modeoblique disturbance

with 0= 550at R = 1550. Figure (14b) shows a comparison of the growth rates of a second

mode 2D disturbance with 0 = 0° at R = 1550. Nonparallel growth rates are calculated by using

Eq (33) at the y-location where the mass-flow disturbance has a maximum. For the first mode,

nonparallel calculations (curve (c)) enhances the agreement between the theory and the experi-

ment especially near the peak growth rates. However, higher growth rates are given by scat-

tered experimental data in the frequency range 15 - 22 x 10-6. For the second mode, Fig(14b)

shows excellent agreement between the nonparallel calculations and the experiment at the

lower frequency region and good agreement near the second neutral point. Also, the experi-

mental data indicate a shift in the unstable frequency band from the parallel results, as

predicted by the nonparallel calculations. However, the maximum growth rate for the second

mode is not matched between the calculations and the experiment.

As mentioned in Section 3, the discrepancy between the nonparallel calculations and the

experiment is expected. The wide peaks predicted by the calculations [15] of the mass-flow

disturbance amplitude at some frequencies make it experimentally difficult to measure the

actual growth rate, especially if the growth rate changes rapidly around the peak location. In

Fig (15), we show theoretical results of the variation with y of both the mass-flow disturbance

amplitude t_91 and the nonparallel growth rate (Eq 33) based on G. These results are given in

Fig(15) for the frequencies (a) F = 15x10 -'6 for a first mode and (b) F = 125x10-6 for a second

mode, and indicate a rapid change of growth rate around the peak amplitude. These two fre-

quencies are chosen because of the apparent uncertainty in the measurement of the experimen-

tal growth rate near these frequencies, see Fig (14). These experimental growth rates are

included in Figs (15) to show that the experimental measurements of the mass-flow amplitude

lies within a certain percentage deviation from the peak. The y-variations of the mass-flow

amplitude and the growth rates shown in Fig (15) are typical for the first and second unstable

frequency range at R = 1550, except that the y-location of 1_glmax varies slightly with frequency.

The peak is not sharp in general, but it extends over a considerable normal distance [15].



-21 -

5. CONCLUDING REMARKS

The nonparallel correction to the growth rates of disturbances developing in the flat plate

boundary layer have been computed for a wide range of Mach numbers. Various definitions

are used to calculate the nonparallel growth rates. A definition, which is based on a pointwise

measure for the disturbance amplitude, is a function of the normal as well as the streamwise

coordinates. On the other hand, a definition which is based on an integrated measure (across

the boundary layer) for the disturbance amplitude allows one to define a unique total growth

rate at any streamwise location. From the present calculations, we conclude with the following

remarks :

1. If we choose to follow the peak of the mass-flow amplitude in the calculations, the growth

rate is changing rapidly around this point. Theoretical calculations of the eigenfunction and its

x-derivative require high resolution in the normal coordinate direction in order to correctly esti-

mate the growth rates. On the other hand, calculations at different Mach numbers show that

the nonparallel growth rate (Eq 33) at a fixed R is nearly independent of y towards the outer

edge of the boundary layer.

2. The distortion of the mass-flow eigenfunction (the third term in Eq 33) is small at the y-

location where the mass-flow amplitude peaks. However, its contribution to the calculated

growth rate is significant.

3. Nonparallel effects calculated at R = 1000 by using the maximum mass-flow amplitude cri-

teflon indicate that the maximum nonparallel spatial growth rate is higher by approximately

20% in the supersonic range (for an oblique first mode), and by about 8% - 22% in the hyper-

sonic range (for a 2D second mode) as compared to the parallel one. Also, in the range of

Mach numbers from 0 - 10, the most unstable frequency shifts to a higher value by about 6% -

12% compared to the parallel one.
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4. A meaningfulcomparisonbetweenthe theory and experimentrequiresthat the sameflow

physical quantity be usedto calculatethe disturbancegrowth rate in both. All terms of Eq

(33) are accountedfor in the experimentalmeasurement.When the mass-flowamplitude is

used for this purpose,uncertaintyin detectingits peak in the experimentwill contributeto

errors in the experimental determinationof the disturbance growth rates; and hence a

discrepancywith the theoretical predictions. This uncertainty most probably occurred in

Kendall's experiment[8] at M_ = 4.5 when measuring the growth rate at some frequencies. In

spite of that, we find good agreement between the calculated nonparallel growth rates and

Kendall's experiment [8] at m, = 4.5.
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APPENDIX A : Nonzero elements of b,q, n = 1...8, j : 1,..8 in Eq (15)

b12 = 1, b2a =/R _(I-tT) + _z + _2,

bz2 = -t.ty/l.t, bz3 = Ruy/(J.tT) - icc[_/_t + (m+l)Ty/T],

b_ = io.R/t.t - (m+l)q,M_ _,

bz5 = (m+l)a_/_t - (j2uy)y/_t, b26 = -_uy/_,

b31 =-ia, b33=Ty/T, b34=-i'yM_(p, b35=i(p/T,

b37 = -i_, b41 = -ict_[(m+2)b33 - 2b22], b42 = _b31,

b43 = (m+2)_[Tj, y/T - b22b33] - _b21,

b44 = -i (m+2)_TM. 2 [(b33 - b2z)_ + auy ],

b 45 = i _[c_uy (121_t+ (m +2)/T) + (m +2)_ty _/(k.tT)],



b46 = i(m+2)X(_/T, b47 = _b41/R, b48 = -iz_,

b56 = 1, b62 =-2(?--1)M_ruy,

b63 = R FT:_/_T) + ieLuyb62,

b64 = -iR (]'--1)M 2 r_/i.t,

b65 =/R F_/(i.tW) + ot2 + 132- (y--1)M2Fl_uy

b66 = 2bzz, b83 = b37[(m+l)b33 - b22],

b78 = 1, b84 = 13bz4/eq bs5 = (m+l)[_C/T,

bs8 = bz_b87 = b21 ,
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2 _ _y/_t,

where _ = au-o_, _ = 1/[R/I.t + i(m+2)yM_¢_], ft = dWdT, and the y-subscript denotes b/by. The sub-

script 0 that is adopted in the analysis for the mean-flow quantities is dropped here for simpli-

city.

APPENDIX B : hx and h3 in Eq 27

hl=n__.o_ I a'z_n dy' h3=n=o_-_ I dn_n dy

where the nonzero elements of a., n = 1..... 8 are :

a2 = -i(m+l)aTQ1 - RQ2/I_, a3 = TQ1,

a4 = (m+2)Z[(IJTT/t.t + 2Ty)Q1 + TQI ] + RzQ3/_t,

a6 = -R FQ54t, a8 = -i(m+l)_TQ1 - RQ4/_t

where

Q1 = -(_1 + yM_u_ - u_5/T)/T,

Qz = [2i(m+2)_t_lR - u/T]_l + [_3 + (m+l)_(_3_ + il3¢7)]/R - _,

Q3 = [mlJT_l + (m+l)tJ._ly + _tuy_5]/R + 1¢_3,
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Q4 = i(m+l)g_l/R + _c_7,

Q5 = (_-I)M_ (21auy _3/R + u _) + [2iga/(R F)-u/TI_5,

and the nonzero elements of d., n = 1.....8 are :

d2 = -i(m+l)aTSa - RSz/g, d3 = TSa,

d4 = (m+2)X[(PTT/I.t + 2Ty)S1 + TS b ] + RzS3/I.t,,

de, = -R FSs/I.t, ds = -i(m+l)_TS1 - RSdl.t

where

Sl = ([ux+vy-2NTl_5 + u_5_ + v_6 + T:_x}/T 2 - TM_[u,,+vy-A/TIG+uG,,+v_4yl/T - _1,,/T

S z = [i (m +2)(cqa)_/R -u_/T ]_t + [2i (m +2)ga/R -u/T] 41,, - v _2/T+ [(m + 1)g_3_ +m _t__3y+gy _3_]/R

- TM2A_/T - _ + {icq2[(m+2)u_+mvy]+AIT2}_5 + if3[(m+l)g_7_+ml.t_v]/R

$3 = [mp_l,,+l.t:,_2+(m+l)tx_,l/R + [i(at.t)_,/R-vy/T]_3- v_3y/T + w,_3,,

+ [(m + 1)13.u_ +uy 12_+(m +2)_vyy ] _5/R + _tuy _5_,/R + [(m +2)vy +mu_, 1(12_5)y/R

$4 = i_[I.t,,_l+(m+l)l.t_a._]/R - i_13.m(u:,+v_,)_s/R + i (at.t),,_v/R + Ic_7,, - v_8/T

S5 = (y--1)M_ {Px_l + 2ig(_1 + _7([(m+2)ux+mVy]/R-Tx_l/T}

+ 2g(y-- 1)M 2 {u_ _3_+[mu_ +(m +2)vy ]_3y } - (uT_ +vTy )(TM2 _,gT-_s/r z) + (y-- 1)M _ (u _+v _ )

+ i(I.toL_+2cvet_)_s/(R I-') + [2i cttx/(R F)-u/T]_5_ - v_/T

where

A = uT_ + vTy, A = uu_ + vuy, ic = 2igo./R - u/T



and the x-subscript denotes 3/3x.
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Table 1 Calculated values of different terms in Eq (33) for various Mach numbers at R = 1000

and the most unstable nonparallel frequency (DIS is the last term in Eq 33).

M _, - °_i --(_i -I-E_i ) OIS o[Eq 33]

First mode, 0 = 0,0,55,60,65 respectively

0.0 .6237e-2

0.8 .4501e-2

1.6 .2626e-2

2.2 .2141e-2

3.0 .1852e-2

.6813e-2

.4985e-2

.3236e-2

.2843e-2

.2623e-2

-.0421e-2

-.0606e-2

-.0103e-2

-.0072e-2

-.0166e-2

.6392e-2

.4378e-2

.3133e-2

.2771e-2

.2458e-2

Second mode, 0 = 0

4.5

5.8

7.0

10.

.2878e-2

.3018e-2

.2323e-2

.6483e-3

.4889e-2

.4687e-2

.3766e-2

.2443e-2

-.1307e-2

-.1349e-2

-.1525e-2

-.1315e-2

.3582e-2

.3338e-2

.2241e-2

.1128e-2
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